Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong
prapun@siit.tu.ac.th
Source Coding

Office Hours:
BKD 3601-7
Monday 14:00-16:00
Wednesday 14:40-16:00

Elements of digital commu. sys.

Reference

- Elements of Information
'the jewel in Stanford's crown'

One of the greatest information theorists since Claude Shannon (and the one most like Shannon in approach, clarity, and taste).

The ASCII Coded Character Set

English Redundancy: Ex. 1

J-st tr- t-r--d th-s s-nt-nc-.

English Redundancy: Ex. 2

yxx cxn xndxrstxnd whxt x xm wrxtxng xvxn xf x rxplxcx xll thx vxwxls wxth xn 'x' (t gts lttl hrdr fy dn't vn kn whr th vwls r).

English Redundancy: Ex. 3

To be, or xxx xx xx , xxxx x x $x x$ x $x x x x x x x$

Ex. DMS (1)

$$
\begin{aligned}
& \mathcal{S}_{X}=\{a, b, c, d, e\} \quad p_{X}(x)= \begin{cases}1 / 5, & x \in\{a, b, c, d, e\} \\
0, & \text { otherwise }\end{cases} \\
& \text { Information } \\
& \text { Source }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b b a a b e b e d c } \\
& \text { c ed b c e c a a c } \\
& \text { a a e a c c a a d c } \\
& d \text { e e a a c a a a b } \\
& \text { b c a e b b e d b c } \\
& \text { d e b c a e e d d c } \\
& d \text { a b c a b c d d e } \\
& \mathrm{d} \mathrm{c} \text { e a b a a c a d } \longrightarrow
\end{aligned}
$$

Approximately 20% are letter 'a's

Ex. DMS (2)

$$
\mathcal{S}_{X}=\{1,2,3,4\}
$$

$$
p_{x}(x)= \begin{cases}1 / 2, & x=1, \\ 1 / 4, & x=2, \\ 1 / 8, & x \in\{3,4\} \\ 0, & \text { otherwise }\end{cases}
$$

Information

2	1	1	2	1	4	1	1	1	1
1	1	4	1	1	2	4	2	2	1
3	1	1	2	3	2	4	1	2	4
2	1	1	2	1	1	3	3	1	1
1	3	4	1	4	1	1	2	4	1
4	1	4	1	2	2	1	4	2	1
4	1	1	1	1	2	1	4	2	4
2	1	1	1	2	1	2	1	3	2
2	1	1	1	1	1	1	2	3	2
2	1	1	2	1	4	2	1	2	1

Approximately 50% are number ' 1 's

Demo: DMS in MATLAB

```
clear all; close all;
S_X = [1 2 3 4]; p_X = [1/2 1/4 1/8 1/8]; n = 1e6;
SourceString = randsrc(1,n,[S_X;p_X]);
```

Alternatively, we can also use

```
SourceString = datasample(S_X,n,'Weights',p_X);
```

rf $=$ hist (SourceString,S_X)/n; \% Ref. Freq. calc.
stem(S_X,rf,'rx','LineWidth',2) \% Plot Rel. Freq.
hold on
stem(S_X,p_X,'bo','LineWidth',2) \% Plot pmf
$x \lim \left(\left[\min \left(S _X\right)-1, \max \left(S _X\right)+1\right]\right)$
legend('Rel. freq. from sim.','pmf p_X(x)')
xlabel('x')
grid on

Relative freq. of letters in the English language

[http://en.wikipedia.org/wiki/Letter_frequency]

Relative freq. of letters in the English language

Example: ASCII Encoder

Character	Codeword
\vdots	
E	1000101
\vdots	1001100
I	
\vdots	1001111
O	
\vdots	
V	

MATLAB:

```
>> M = 'LOVE';
>> X = dec2bin(M,7);
>> X = reshape(X',1,numel(X))
X =
1001100100111110101101000101
```


Morse code

(wired and wireless)

- Telegraph network
- Samuel Morse, 1838

- A sequence of on-off tones (or , lights, or clicks)

SAMUEL MORSE DICTATES A LETTER TO HIS SECRETARY.

Example

WolframAlphat
 WolframAlpha

"I love you." in Morse code


```
# Examples 疒 Random
```

Input interpretation:
Morse code I love you.

Morse code translation:

() Download page

POWERED BY THE WOLFRAM LANGUAGE
[http://www.wolframalpha.com/input/?i=\"I+love+you.\"+in+Morse+code]

Morse code: Key Idea

Frequently-used characters (e,t) are mapped to short codewords.

Basic form of compression.

Morse code: Key Idea

Frequently-used characters are mapped to short codewords.

Relative frequencies of letters in the
English language

Morse code: Key Idea

Example: ASCII Encoder

Character	Codeword
\vdots	
E	1000101
\vdots	1001100
L	
\vdots	1001111
O	
\vdots	
V	

MATLAB:

```
>> M = 'LOVE';
>> X = dec2bin(M,7);
>> X = reshape(X',1,numel(X))
X =
1001100100111110101101000101
```


Shannon-Fano coding

- Proposed in Shannon's "A Mathematical Theory of Communication" in 1948
- The method was attributed to Fano, who later published it as a technical report.
- Should not be confused with
- Shannon coding, the coding method used to prove Shannon's noiseless coding theorem, or with
- Shannon-Fano-Elias coding (also known as Elias coding), the precursor to arithmetic coding.

Huffman Code

- MIT, 1951

- Information theory class taught by Professor Fano.
- Huffman and his classmates were given the choice of
- a term paper on the problem of finding the most efficient binary code.
or
- a final exam.
- Huffman, unable to prove any codes were the most efficient, was about to give up and start studying for the final when he hit upon the idea of using a frequency-sorted binary tree and quickly proved this method the most efficient.
- Huffman avoided the major flaw of the suboptimal Shannon-Fano coding by building the tree from the bottom up instead of from the top down.

Ex. Huffman Coding in MATLAB

Observe that MATLAB

```
px = [0.5 0.25 0.125 0.125];
% pmf of X
SX=[1:length(pX)];
automatically give [dict,EL] = huffmandict(SX,pX);
```

```
%% Pretty print the codebook.
```

%% Pretty print the codebook.
codebook = dict;
codebook = dict;
for i = 1:length(codebook)
for i = 1:length(codebook)
codebook{i,2} = num2str(codebook{i,2});
codebook{i,2} = num2str(codebook{i,2});
end
end
codebook

```
codebook
```

\% Source Alphabet
\% Create codebook the expected length of the codewords
\%\% Try to encode some random source string
$\mathrm{n}=5$; \% Number of source symbols to be generated
sourceString = randsrc(1,10,[SX; pX]) \% Create data using pX
encodedString = huffmanenco(sourceString,dict) \% Encode the data

Ex. Huffman Coding in MATLAB

codebook $=$

[1]	'0'	
$[2]$	1	0
$[3]$	1	1
	1	
$[4]$	1	1
0		

sourceString $=$

$$
\begin{array}{llllllllll}
1 & 4 & 4 & 1 & 3 & 1 & 1 & 4 & 3 & 4
\end{array}
$$

encodedString $=$

0	1	1	0	1	1	0	0	1	1	1	0	0	1	1	0	1	1	1	1	1	0

Ex. Huffman Coding in MATLAB

```
pX=[ 0.4 0.3 0.1 0.1 0.06 0.04]; % pmf of X
SX = [1:length(pX)]; % Source Alphabet
[dict,EL] = huffmandict(SX,pX); % Create codebook
```

\%\% Pretty print the codebook.
codebook = dict;
for i = 1:length (codebook)
codebook\{i,2\} = num2str(codebook\{i,2\});
end
codebook

EL

The codewords can be different from our answers found earlier.
The expected length is the same.
>> Huffman_Demo_Ex2
codebook =

[2] '0 1'
[3] '0 0 ' 0 0
[4] '0 $0 \quad 1$ '
[5] 1000
[6]
$\mathrm{EL}=$

Huffman Coding: Source Extension

